#### MULTICELLULAR AND TISSUE LEVELS OF ORGANIZATION

### **Crigins of Multicellularity**

### Phylum Porifera

- Cell Types, Body Wall, and Skeletons
- Water Currents and Body Forms
- Maintenance Functions
- Reproduction

#### Phylum Cnidaria (Coelenterata)

- The Body Wall and Nematocysts
- **Alternation of Generations**
- **Maintenance Functions**
- Reproduction
- Class Hydrozoa
- Class Scyphozoa
- Class Cubozoa
- **Class Anthozoa**

#### Phylum Ctenophora

# Mastigias quinquecirrha

- > The so-called **stinging nettle**, is a common Atlantic scyphozoan.
- Iong tentacles and fleshy lobes hanging from the oral surface.
- Populations increase in late summer and become hazardous to swimmers.
- > A rule of thumb for swimmers is to avoid helmet-shaped jellyfish.



- ✓ The margin of its medusa has a fringe of short tentacles and is divided by notches.
- ✓ Gastric pouches, which contain cnidocyte-laden gastric filaments.
- ✓ Canal system is extensively branched and leads to a ring canal around the margin of the medusa.
- ✓ plankton feeder
- ✓ eight specialized sensory structures, called **rhopalia**

# • rhopalium

- ✓ Located in the notches at the margin of the medusa.
- ✓ Each rhopalium consists of sensory structures surrounded by rhopalial lappets.
- ✓ Two sensory pits (presumed to be olfactory) are associated with sensory lappets.
- ✓ A statocyst and photoreceptors, called ocelli, are associated with rhopalia.
- $\checkmark$  Aurelia displays a distinct negative phototaxis.



Fig: Structure of a Scyphozoan Medusa. (a) Internal structure of *Aurelia*. (b) A section through a rhopalium of *Aurelia*. Each rhopalium consists of two sensory (olfactory) lappets, a statocyst, and a photoreceptor called an ocellus.

# Reproduction

- ✓ Scyphozoans are **dioecious**.
- ✓ Aurelia's **eight gonads** are in gastric pouches, two per pouch.
- ✓ Gametes are released into the **gastric pouches**.
- ✓ In Aurelia, eggs lodge in the oral lobes, where fertilization and development to the planula stage occur.
- ✓ The planula develops into a polyp called a scyphistoma.
- ✓ The scyphistoma lives a year or more, during which time budding produces miniature medusae, called ephyrae.
- Repeated budding of the scyphistoma results in ephyrae being stacked on the polyp.
- ✓ After ephyrae are released, they gradually attain the adult form.



Fig: *Aurelia* Life History. *Aurelia* is dioecious, and like all scyphozoans, the medusa (10 cm) predominates in the organism's life history. The planula (0.3 mm) develops into a polyp called a scyphistoma (4 mm), which produces young medusae, or ephyrae, by budding.

# **CLASS CUBOZOA**

- ✓ The class Cubozoa was formerly classified as an order in the Scyphozoa.
- ✓ The medusa is cuboidal, and tentacles hang from each of its corners.
- ✓ Polyps are very small and, in some species, are unknown.
- Cubozoans are active swimmers and feeders in warm tropical waters.
- ✓ Some possess dangerous nematocysts



Fig: Class Cubozoa. The sea wasp, *Chironex fleckeri*. The medusa is cuboidal, and tentacles hang from the corners of the bell. *Chironex fleckeri* has caused more human suffering and death off Australian coasts than the Portuguese manof-war has in any of its home waters. Death from heart failure and shock is not likely unless the victim is stung repeatedly

# **CLASS ANTHOZOA**

- $\checkmark\,$  colonial or solitary, and
- ✓ lack medusae.
- $\checkmark$  They include anemones and stony and soft corals.
- $\checkmark$  Anthozoans are all marine and are found at all depths.
- ✓ Externally, show perfect radial symmetry.
- ✓ Internally, the mesenteries and other structures convey biradial symmetry.

### Anthozoan polyps differ from hydrozoan polyps in three respects:

- 1) the mouth leads to a pharynx, which is an invagination of the body wall that leads into the gastrovascular cavity.
- 2) Mesenteries that bear cnidocytes and gonads on their free edges divide the gastrovascular cavity into sections.
- 3) The mesoglea contains amoeboid mesenchyme cells

#### Sea anemones

- ✓ Solitary, frequently large, and colorful
- ✓ The polyp attaches to its substrate by a pedal disk.
- ✓ An oral disk contains the mouth and hollow, oral tentacles.
- ✓ At one or both ends of the slitlike mouth is a siphonoglyph to maintain the hydrostatic skeleton.
- ✓ **Mesenteries** are arranged in pairs.
- Mesenterial filaments bear cnidocytes, cilia that aid in water circulation.
- ✓ Threadlike acontia at the ends of mesenterial filaments bear cnidocytes.



(a)



#### Fig: Representative Sea Anemones.

(a) Giant sea anemone (Anthopleura xanthogrammica). Symbiotic algae give this anemone its green color.

(b) This sea anemone (*Calliactis parasitical*) lives in a mutualistic relationship with a hermit crab (Eupargurus). Hermit crabs lack a heavily armored exoskeleton over much of their bodies and seek refuge in empty snail shells. When this crab outgrows its present home, it will take its anemone with it to a new snail (whelk) shell. This anemone, riding on the shell of the hermit crab, has an unusual degree of mobility. In turn, the anemone's nematocysts protect the crab from predators.



#### Fig: Class Anthozoa. Structure of the anemone, Metridium sp.

Longitudinal muscle bands are restricted to the mesenteries. Circular muscles are in the gastrodermis of the column.

### Locomotion

- ✓ Anemones have limited locomotion.
- ✓ They glide on their pedal disks, crawl on their sides, and walk on their tentacles.
- ✓ When disturbed, some "**swim**" by thrashing their bodies or tentacles.
- ✓ Some anemones **float** using a gas bubble held within folds of the pedal disk.

# Reproduction

- ✓ Anemones show both sexual and asexual reproduction.
- ✓ A piece of pedal disk may break away from the polyp and grow into a new individual in a process called pedal laceration.
- ✓ Longitudinal or transverse fission.
- $\checkmark$  Anemones may be either monoecious or dioecious
- ✓ Male gametes mature earlier than female gametes. This is called **protandry**.
- ✓ Fertilization may be external or within the gastrovascular cavity.
- Cleavage results in the formation of a planula, which develops into a ciliated larva that settles to the substrate, attaches, and eventually forms the adult.

# corals

- Stony corals form coral reefs and, except for lacking siphonoglyphs, are similar to the anemones.
- Calcium carbonate exoskeleton that epithelial cells secrete around the base and the lower portion of the column.
- ✓ Sexual reproduction is similar to that of anemones, and asexual budding produces other members of the colony.



Fig: Class Anthozoa. A stony coral polyp in its calcium carbonate skeleton (longitudinal section).

#### **Octacorallian corals**

- ✓ The colorful octacorallian corals are common in warm waters.
- ✓ They have eight pinnate (featherlike) tentacles, eight mesenteries, and one siphonoglyph.
- ✓ The body walls of members of a colony are connected, and mesenchyme cells secrete an internal skeleton of protein or calcium carbonate



Fig: Representative Octacorallian Corals.

(a) Fleshy sea pen (*Ptilosaurus gurneyi*). (b) Purple sea fan (*Gorgonia ventalina*).

# PHYLUM CTENOPHORA

### **PHYLUM CTENOPHORA**

- ✓ sea walnuts or comb jellies, *Pleurobranchia*
- ✓ The approximately 90 described species are all marine.

**Characteristics of the phylum Ctenophora include:** 

- 1. Diploblastic, tissue-level organization
- 2. Biradial symmetry
- Gelatinous mesoglea between the epidermal and gastrodermal tissue layers
- 4. Gastrovascular cavity
- 5. Nervous system in the form of a nerve net.
- 6. Adhesive structures called colloblasts
- 7. Eight rows of ciliary bands, called comb rows, for locomotion

# CLASSIFICATION OF THE CTENOPHORA

# Phylum Ctenophora (ti-nof'er-ah)

- The animal phylum whose members are biradially symmetrical, diploblastic, usually ellipsoid or spherical in shape, possess colloblasts, and have meridionally arranged comb rows.
- Class Tentaculata (ten-tak'u-lah-tah)
- With tentacles that may or may not be associated with sheaths, into
- which the tentacles can be retracted. Pleurobranchia.
- Class Nuda (nu'dah)
- Without tentacles; flattened; a highly branched gastrovascular cavity. Beroë.







Fig: Phylum Ctenophora. The ctenophore *Mnemiopsis sp*. Ctenophorans are well known for their bioluminescence. Light-producing cells are in the walls of their digestive canals, which are beneath comb rows

## **Structure of** *Pleurobranchia*

- ✓ Spherical or ovoid, transparent body about 2 cm in diameter.
- ✓ Eight meridional bands of cilia, called comb rows, between the oral and aboral poles.
- Comb rows are locomotor structures that are coordinated through a statocyst at the aboral pole.
- ✓ Tentacles possess contractile fibers that retract the tentacles, and adhesive cells, called colloblasts.

- ✓ The mouth leads to a branched gastrovascular canal system.
- ✓ Some canals are blind; however, two small anal canals open to the outside near the apical sense organ.
- ✓ Unlike the cnidarians, ctenophores have an anal opening.
- $\checkmark$  Some undigested wastes are eliminated through these canals, and

some are probably also eliminated through the mouth

#### Fig: Phylum Ctenophora

(a) The structure of *Pleurobranchia sp*.The animal usually swims with the oral end forward or upward.

(b) Colloblasts consist of a hemispherical sticky head that connects to the core of the tentacle by a straight filament. A contractile spiral filament coils around the straight filament. Straight and spiral filaments prevent struggling prey from escaping.



# **Reproduction in** *Pleurobranchia*

### ✓ Monoecious

- ✓ Two bandlike gonads are associated with the gastrodermis.
- $\checkmark$  One of these is an ovary, and the other is a testis.
- ✓ Gametes are shed through the mouth
- ✓ Fertilization is external, and a slightly flattened larva develops.